

Parallel Computation Of Sensitivity Derivatives With Application to Aerodynamic Optimization of a Wing

R. T. Biedron J. S. Samareh L. L. Green

NASA Langley Research Center

Computational Aerosciences Workshop

NASA Ames Research Center, August 25-27, 1998

Outline

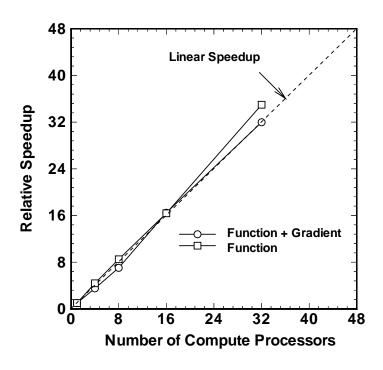
- Introduction
- Parallel Approach and Scaling
- Parameterization And Design Variables
- Comparison With Finite Differences
- Wing Optimization
- Summary

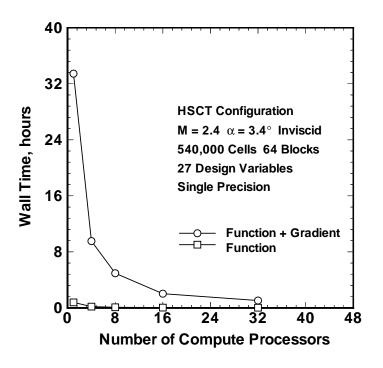
Introduction

- For gradient-based optimization, need fast, accurate derivatives of objective functions and constraints
- Code differentiation is exact and consistent with flow solver; tedious to do by hand, but automatic differentiation (AD) tools make it relatively simple
- AD tools have been developed by Argonne National Laboratory and Rice University
 - ADIFOR differentiates code as it runs in "forward mode"
 - ADJIFOR differentiates code as it operates in "reverse mode" to mimic adjoint formulation

Introduction (cont.)

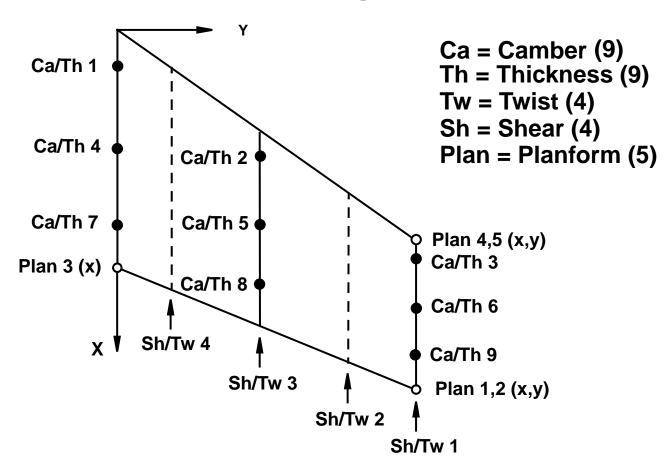
- ADIFOR is mature technology used for the current work; ADJIFOR has only recently been developed and is the focus of the next presentation
- ADIFOR applied to the NASA Langley CFL3D code
 - Solves Euler or Thin-Layer Navier Stokes
 - Point match / patched / overset structured grids
 - Steady state or time accurate
- Computational cost of derivative calculation via ADIFOR roughly scales with N_{DV}
- Reduce wall time by using parallel processing


Parallel Approach


- Can utilize multiple processors to reduce wall time in two ways:
 - "Coarse grain" parallelization by computing only a subset of N_{dv} on a CPU (not considered here)
 - "Fine grain" parallelization by breaking the domain into a number of smaller blocks, and computing each block on a different CPU
 - For large problems, can combine both methods
- CFL3D (+AD) parallelized across blocks via MPI
- For efficiency, parallel code must scale with number of CPUs

Scaling

1-32 Compute Processors on 195 Mhz Origin 2000 HSCT Configuration 540,000 Grid Pts 27 DVs


Parameterization

- New scheme developed by Samareh to parameterize existing CFD and CSM grids
- Direct application to aero-structural interaction
- Bezier net placed around baseline mesh
- Control points can be used directly as design variables, or linked to design variables such as thickness, camber and twist
- Mesh is "rubberized" and can be twisted, compressed, etc., but retains original topology

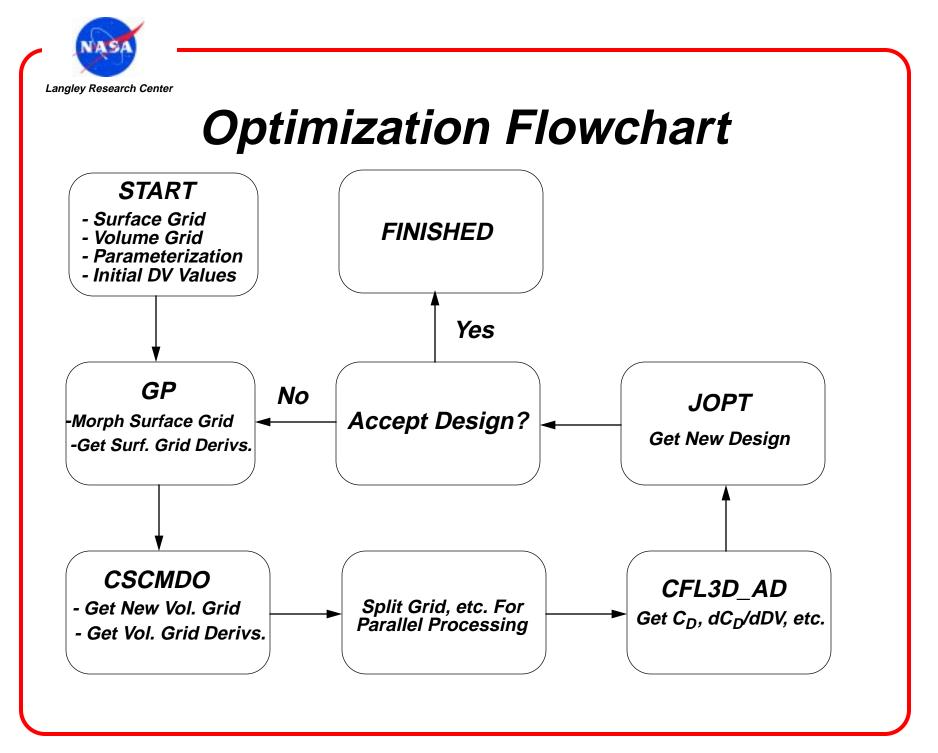
Design Variables - ONERA M6

• 52 parameters used to define the surface mesh, 31 of these chosen as design variables:

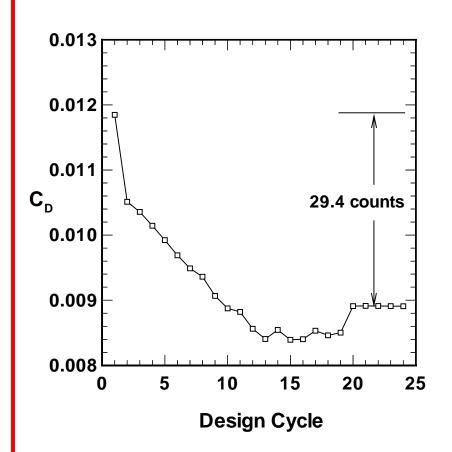
Comparison With Finite Differences

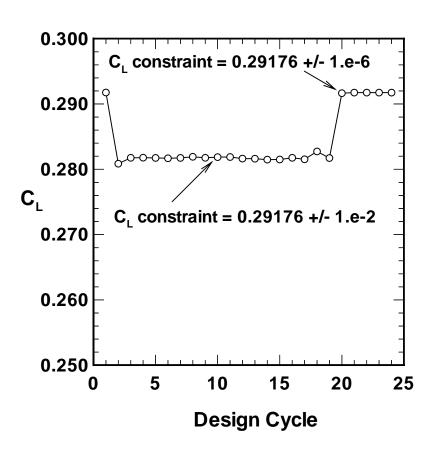
Central Finite Differences With $h = 1 \times 10^{-6}$

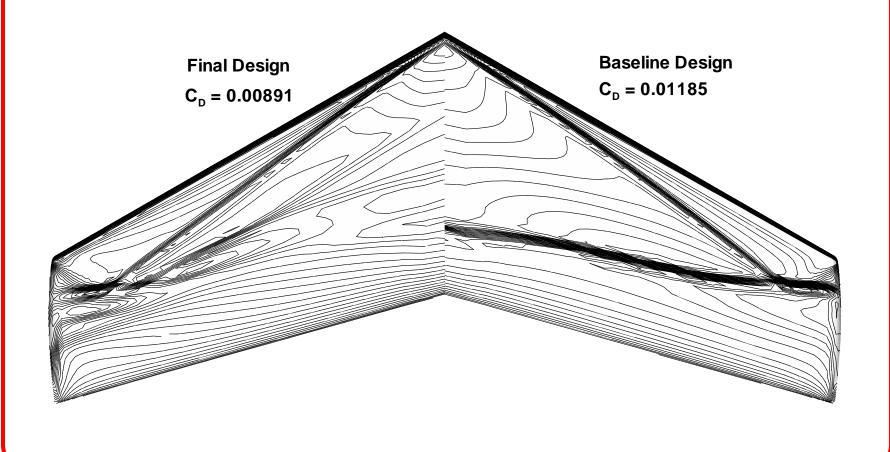
Derivative.	AD (DP)	FD (DP)	% error (DP)	AD (SP)
dC _L /d(Plan 3)	-0.08333	-0.08333	0.0	-0.08333
dC _L /d(Tw 3)	-0.02944	-0.02944	0.0	-0.02944
dC _L /d(Sh 3)	+0.02001	+0.02001	0.0	+0.02001
dC _L /d(Th 8)	+0.43321	+0.43321	0.0	+0.43323
dC _L /d(Ca 8)	+2.8380	+2.8380	0.0	+2.8380
dC _D /d(Plan 3)	-0.01065	-0.01065	0.0	-0.01065
dC _D /d(Tw3)	-0.00246	-0.00246	0.0	-0.00246
dC _D /d(Sh 3)	-0.00138	-0.00138	0.0	-0.00138
dC _D /d(Th 8)	+0.07016	+0.07016	0.0	+0.07016
dC _D /d(Ca 8)	+0.16467	+0.16467	0.0	+0.16467

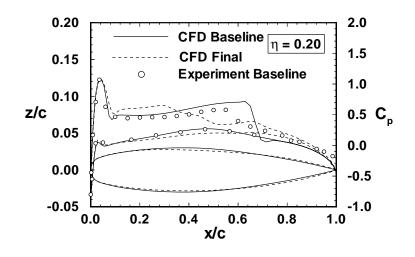

Wing Optimization

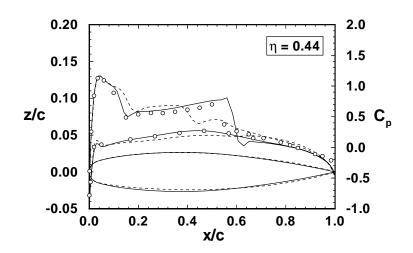
- Objective: reduce drag while maintaining same lift as baseline configuration
- 193x33x33 ONERA M6 wing with 31 DVs shown previously
 - Planform variables constrained (area = const)
 - Tip thickness variables constrained to prevent negative cell volumes at tip
- DV bounds: twist +/- 1 deg., all others +/- 1% span
- Flow solver, geometry perturbation codes, and optimizer coupled via UNIX scripts

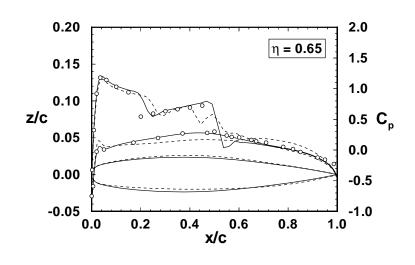

Wing Optimization (cont.)

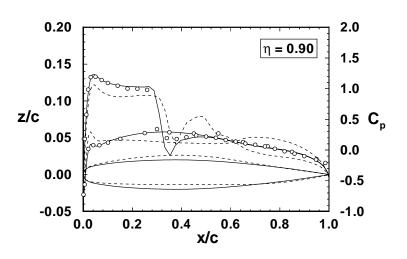

- Optimizer: JOPT = CONMIN + linear approximation to objective function and constraints
 - Linear approx. valid in a limited region around current solution
 - Move limits introduced to keep within linear region; move limits typically << DV bounds</p>
- α not used as a design variable optimizer would not move away from specified lift value
 - Temporarily relax the lift constraint until minimum drag is reached
 - Tighten constraint to target value for final design


Design Cycle History




Surface Pressures





Pressure Coefficients / Wing Sections

Summary

- ADIFOR applied to parallel version of CFL3D AD derivatives demonstrated to be accurate
- Parallel AD code shown to scale well with number of processors
- Parallel AD code coupled with geometry and optimization packages for optimization problems
- Demonstrated optimization package with 29 count drag reduction on inviscid M6 wing - also applied to HSCT optimization with 540k pts and 27 DVs
- Future applications to include viscous flows